
General Parser
(General Purpose Bitstream Parser)

Takaaki Ota, ATC/ETD
8/23/1999

General Parser

i

Contents

GENERAL PARSER ... 1

GENERAL PARSER ... 1

1 BACKGROUND ... 1

2 LIMITATION OF AN ADAPTIVE PARSER.. 2

3 A PROGRAMMABLE PARSER ... 2

3.1 SYNTAX DEPENDENT ACTIONS AND SYNTAX INDEPENDENT ACTIONS ... 2
3.2 DESCRIBING THE SYNTAX DEPENDENT ACTIONS .. 3

4 PARSER ARCHITECTURE (OPERATIONAL MODEL) ... 4

4.1 BASIC ARCHITECTURE ... 4
4.2 EXTENDED ARCHITECTURE.. 5

5 BITSTREAM DESCRIPTION LANGUAGE (BDL) ... 6

5.1 BDL SPECIFICATION ... 8
5.1.1 BDL Program.. 8
5.1.2 Declaration ... 9
5.1.3 Function Definition ... 9
5.1.4 Type Specifier.. 10
5.1.5 Literal Name ... 10
5.1.6 Parameter List... 11
5.1.7 Parameter ... 11
5.1.8 Enumeration Specifier ... 11
5.1.9 Enumerator List... 12
5.1.10 Enumerator ... 12
5.1.11 VLC List .. 13
5.1.12 VLC... 13
5.1.13 Statement... 13
5.1.14 Compound Statement... 14
5.1.15 Expression Statement... 14
5.1.16 Selection Statement.. 14
5.1.17 Iteration Statement .. 14
5.1.18 Declaration Statement ... 14
5.1.19 Input Information .. 17
5.1.20 Input Information List.. 17
5.1.21 Field Declarator.. 17
5.1.22 Declarator... 18
5.1.23 Initialized Declarator .. 18
5.1.24 Direct Declarator .. 18
5.1.25 Jump Statement ... 19
5.1.26 Label Statement... 19
5.1.27 Expression... 19
5.1.28 Assignment Expression .. 19
5.1.29 Conditional Expression.. 19
5.1.30 Variable Reference .. 20
5.1.31 Assignment Operator ... 20
5.1.32 Binary Expression ... 20
5.1.33 Binary Operator .. 20
5.1.34 Unary Expression .. 20

General Parser

ii

5.1.35 Postfix Expression ... 21
5.1.36 Primary Expression ... 21
5.1.37 Constant.. 21
5.1.38 String Constant.. 22
5.1.39 Control Line .. 22

6 VIRTUAL MACHINE (VM) .. 23

6.1 VM ARCHITECTURE .. 23
6.2 VIRTUAL MACHINE INSTRUCTION SET (OPCODE).. 25

7 BUILT-IN FUNCTIONS... 27

7.1 SEARCH_WORD.. 27
7.2 LOOK_AT_BITS .. 28
7.3 LOOKING_AT_BITS .. 28
7.4 TELL_BYTES.. 29
7.5 TELL_BITS... 30
7.6 EXIT.. 30
7.7 PRINTF .. 30
7.8 SPRINTF... 31

8 PROTOTYPE GENERAL PARSER.. 32

9 SAMPLE CODE AND EXECUTION OUTPUT.. 32

9.1 SAMPLE 1.. 32
9.2 SAMPLE 2.. 34

10 CONCLUSION ... 38

11 ACKNOWLEDGEMENT... 39

General Parser

1

General Parser
(General Purpose Bitstream Parser)

Takaaki Ota, ATC/ETD
8/23/1999

1 Background

A bitstream parser parses through a digital bitstream according to a given set of syntax
rules then deciphers 0s and 1s and presents the contents to the user in a human
understandable form. It is a very useful and almost necessary tool in digital
communication and signal processing product development. When a target system, which
processes digital signal, is not behaving as it is designed to, the engineer who designed
the system needs to know exactly why the system behaves the wrong way so that he or
she can come up with an effective solution to fix that problem. In this process of
analyzing the system behavior the engineer must find out what specific input pattern,
often overlooked at the time of the original system designed, is triggering the
misbehavior of the system. For this purpose, the engineer needs to study and understand
the input stream thoroughly along with the analysis of the system itself.

I have created several bitstream-parsing software tools in the past MPEG based product
development projects. Each one was made to fit those specific needs of the project. The
first parser was a command line program, which parsed MPEG video elementary stream
in a batch process. It was then modified to parse DSS specific extended syntax. Based on
that program the second major rewriting resulted as an interactive GUI based parser, this
not only parsed MPEG video elementary stream but also MPEG transport stream. That
was then modified to parse DSS transport stream as well. Yet, another modification made
it parse AC3 audio stream too. Users of the software drove those changes. The GUI based
tool was especially successful due to its easy to use interface. This success made the tool
very popular among engineers and the popularity increased the demand to add further
parsing capabilities. Some had asked me to add an EPG data parsing capability, however
I think the foundation of the software had already reached its limit a long time ago. Many
added features are now tweaks to the original design and were never considered from the
beginning. I do not want simply decline those constructive requests from the users yet the
technical difficulty does not allow me to further tweak the old foundation. I needed to
come up with some fundamentally different approach to meet all these demands. I have
been thinking and seeking an answer to this question for some time. Now I think I have
found an ultimate answer. The result I named a ‘General Parser’.

General Parser

2

2 Limitation of an Adaptive Parser

The GUI parser was an adaptive parser. Because of its effective dialoging capability with
a user, it offers the user many options to select. Unlike a command line program, a GUI
parser does not force users to remember cryptic option names. Selecting a specific option
is simply to bring up the option dialog box, read the option names, and point-and-click
the operations of one’s need. It was that simple to change the parser behavior from
parsing MPEG transport stream to DSS transport stream to video elementary stream to
audio stream within MPEG transport stream. However, what happens if a user cannot
find an option for a specific need? This is exactly the problem I have mentioned before.
The parser program can only perform things that it was originally designed to do but
nothing beyond that.

3 A Programmable Parser

To overcome the limitation of the adaptive parser mentioned above, the parser must
become programmable so that users can define what the parser parses and how it does.
However, what exactly does it mean to make a programmable parser? The parser
software itself is already a program that is designed to perform parsing jobs. How can one
make a program programmable? In order to do this we need to separate the two distinctly
different concepts, which are mixed together in the conventional parser program.

3.1 Syntax Dependent Actions and Syntax Independent Actions

The term syntax here means bitstream syntax of the input bitstream, meaning a rule that
governs how to interpret the input bitstream. Any parser action can be categorized into
either a syntax dependent action group or a syntax independent action group. For
example, an action to read the next X bits from the current location of the input bitstream
is a syntax independent action. This action may be operating system dependent but
indifferent from what syntax the input stream follows. However, a decision of whether to
read the next Y bits immediately following the previous X bits or to skip it all together
until the parser sees a bit pattern Z somewhere down the stream, is syntax dependent.
Because this decision is based on the previous bitstream information including bits X.
Hard coding the syntax independent actions into the heart of the parser, and separating
the syntax dependent actions from the parser makes the parser programmable. Syntax
dependent actions, however, are the real work that parser must perform therefore the
parser somehow must obtain those separated syntax dependent actions. Thus this syntax
dependent action is the program that the parser must obtain, understand and execute.

General Parser

3

3.2 Describing the Syntax Dependent Actions

It is easy to say things conceptually, like “separate the syntax dependent actions from the
parser and make the parser programmable”. But in order to build a real working system
things must be defined precisely to detail; otherwise it is just a beautiful blueprint of a
building that no one knows how to build.

The separated syntax dependent actions must be described in a machine-readable form
without containing any ambiguity so that the parser can execute it in a deterministic
fashion. One way of realizing this is defining a computer language that describes the
syntax dependent actions and the parser interprets this description when it actually parses
the input bitstream. An obvious drawback of the interpreting system is the expectation of
very slow parsing. Another idea is breaking down the parser dependent actions into very
low level primitive operations and describing the entire syntax dependent actions by
combining the predefined primitive operations. This is exactly like assembly
programming. It may be fast to execute but we can not expect anyone would actually try
to use this sophisticated and eccentric tool, which requires learning a strange set of
instruction code and writing a unique assembly program. To take advantage of the both
approaches and eliminate the shortcomings of each, a language must be defined that is
easy to learn and straightforward to describe the syntax dependent actions. Then a set of
primitive operations that is fast to execute needs to be defined. Then, a system needs to
be developed that translates the syntax dependent actions described in that language into
a set of predefined primitive operations. Finally, a system that actually executes those
operations needs to be built. In other words I need to 1) define a high level language, 2)
define a virtual machine code, 3) write a compiler that translates a source program
written in that language into a set of virtual machine code, and 4) implement the virtual
machine that executes the virtual machine instructions.

General Parser

4

4 Parser Architecture (Operational Model)

4.1 Basic Architecture

As described in the previous section, the General Parser takes a syntax description file.
Then it compiles the syntax description into primitive instructions (virtual machine
codes). Finally it executes them as quickly as possible while reading the bitstream file
and produces the parsed result.

The following diagram shows the basic relationship between the subject bitstream file,
the parser, the syntax description file and the parsed result. The parser is further broken
down into the compiler, virtual machine code and the execution unit.

Bitstream
File

General Parser

Compiler
Linker

Virtual
Machine Code

Execution Unit (Virtual Machine)

Syntax Description File

Parsed Result

General Parser

5

4.2 Extended Architecture

Above architecture can extend to embody more than one execution unit in order to
perform multiple parsing operations in a cascaded fashion in a single General Parser. A
single compiler can take multiple syntax description files and deliver individually
compiled codes to each execution unit. The entire parser system then looks like the
following diagram. This particular example contains two execution units however; there
is no set limit for the number of execution units. It is governed only by the available
computer resource, mainly by the available memory.

The dashed line arrow connecting the first execution unit to the next one is an internal
bitstream pipeline. This pipeline transparently interconnects multiple execution units. It
means that there is no distinction for the second execution unit whether its input stream is
directly coming from a bitstream file or from another execution unit. The pipeline is not a
simple sequential stream path. It’s implementation is sophisticated enough to permit the
second execution unit a random access into the input stream, without requesting the first
execution unit finish processing its input entirely. This pipelining or filtering mechanism
provides several valuable benefits. First, it allows multiple syntax description files to
represent the layered syntax hierarchy, which is commonly employed in the
communication standards. Each syntax description file corresponds to each of the layer in
the hierarchy. Secondly, it provides users great flexibility in choosing the parsing levels
by mixing and matching the different syntax layers. Thirdly, it provides users ease of
debugging the syntax description by testing each layer individually instead of testing
multi-layered operation at one time.

Bitstream
File

General Parser

Compiler
Linker

Virtual
Machine Code

Execution Unit
(Virtual Machine)

Syntax
Description

File Parsed Result

Syntax
Description

File

Virtual
Machine Code

Execution Unit
(Virtual Machine)

General Parser

6

5 Bitstream Description Language (BDL)

This section discusses about the language for describing the bitstream syntax. The best
way of defining a language that is easy to learn and understand is to borrow the features
from an established popular language. We know a good example of this in the ISO
MPEG standard specification, ISO/IEC 11172-2 and 13818-2. The standard borrows the
syntactical notations from the C programming language. The table on the next page is an
excerpt from ISO/IEC 13818-2, showing the bitstream syntax of a video sequence header.
It hardly requires any additional explanation for you to precisely comprehend how a
sequence header is organized from multiple fields of bits, as long as you have sufficient C
language knowledge. The benefit of this method is now well recognized by many other
standards, which have already adopted it.

I am going to take the same approach defining a language to describe the input bitstream
syntax. This language, which is syntactically a subset of C, is now named the ‘Bitstream
Description Language’ and will be referred to as BDL for short. BDL is very similar in
the way ISO MPEG standard uses the C language as its base, except that it has a few
more syntactical rules added to make it a real computer language, which can be compiled
and executed.

The goals of BDL are 1) simple and easy to learn 2) capable enough to describe any
unknown bitstream syntax and 3) relatively easy to implement its compiler. As a
prototype system has been already built, the goal 1 and 3 are met. Whether the goal 2 is
satisfied or not, we need to see the feedback from the real use experience.

General Parser

7

Table 1 Sequnce Header in ISO/IEC 13818-2

sequence_header() { No. of bits Mnemonic

sequence_header_code 32 bslbf

Horizontal_size_value 12 uimsbf

vertical_size_value 12 uimsbf

aspect_ratio_information 4 uimsbf

frame_rate_code 4 uimsbf

bit_rate_value 18 uimsbf

marker_bit 1 bslbf

vbv_buffer_size_value 10 uimsbf

Constrained_parameters_flag 1 bslbf

load_intra_quantiser_matrix 1 uimsbf

if (load_intra_quantiser_matrix)

intra_quantiser_matrix[64] 8*64 uimsbf

load_non_intra_quantiser_matrix 1 uimsbf

if (load_non_intra_quantiser_matrix)

non_intra_quantiser_matrix[64] 8*64 uimsbf

next_start_code()

}

Here is an example BDL program that expresses a syntactically identical sequence
header. Note that it is very similar to the ISO MPEG syntax presentation but has some
additional information such as presentation format and enumeration item names. In
general, writing a BDL program from such a standard is effortless.

void sequnce_header(void)
{

field “0x%08x”, int sequence_header_code:32;
field "%d" int horizontal_size_value:12;
field "%d" int vertical_size_value:12;
field "<%s> " enum {

aspect_ratio_forbidden,
aspect_ratio_undefined,
aspect_ratio_3x4,
aspect_ratio_9x16,
aspect_ratio_1x221

} aspect_ratio_information:4;
field "<%s>" enum {

frame_rate_forbidden,
frame_rate_23_976,
frame_rate_24_000,
frame_rate_25_000,
frame_rate_29_970,
frame_rate_30_000,
frame_rate_50_000,
frame_rate_59_940,

Table 2 Sequence Header in BDL

General Parser

8

frame_rate_60_000
} frame_rate_code:4;
field "%d" int bit_rate_value:18;
field "%d" int marker_bit:1;
field "%d" int vbv_buffer_size_value:10;
field "%d" int constrained_parameters_flag:1;
field "%d" int load_intra_quantiser_matrix:1;
if(load_intra_quantiser_matrix)

field "%2d " int intra_quantiser_matrix[8][8]:8;
field "%d" int load_non_intra_quantiser_matrix:1;
if(load_non_intra_quantiser_matrix)

field "%2d " int non_intra_quantiser_matrix[8][8]:8;
}

5.1 BDL Specification

Since BDL is a subset of C it is much easier to explain how it is different from C rather
than explaining it without a use of any comparison. The following sections describe the
BDL specification in comparison with the C language. Each section is based on a
syntactical construct and is organized from the top-level construct to the lower level
construct. Also to assure the technical clarity of the language specification and to
eliminate any ambiguities, the beginning of the each section shows the syntactical
construct in BNF (Backus Naur Form); this is a popular tool for describing computer
languages. At the end of each section, some examples are presented to help you
understand the actual use of the syntactical construct.

5.1.1 BDL Program
<bdl_program> ::= { <declaration> }

A bdl program is the top-level language symbol. It consists of repetition of declarations.
The curly brace surrounding the declaration symbol indicates zero or more repetition of
declaration symbols. In plain English, this means that a BDL program consists of a bunch
of declarations. This is the same as C except that there is no consideration for external
declarations in BDL since it does not support linking separately compiled objects. The
entire BDL source program must be compiled at a single time.

Example:

int keep_going = 1;

void main(void)
{

while(keep_going) {
do_this();

}
}

void do_this(void)
{

if(looking_at_bits(0x000001, 24))
keep_going = 0;

else {
field int byte:8;

}

General Parser

9

}

This program does not do anything significant. There are three declarations in this
example program. One is the declaration of the global variable keep_going. Other two are
the function main and the function do_this.

5.1.2 Declaration
<declaration> ::= <statement> | <function_definition>

A declaration is either a statement, see section 5.1.13 below, or a function definition, see
section 5.1.3 below. This is unique to BDL and quite different from C language. C treats
the function definitions as external declarations and declarations as pure declarations,
which are variable declarations. By contrast, BDL treats pure declarations as a kind of
statement for the sake of language simplification. So that global variable declarations are
treated as a kind of statement. A side effect from this is that you can write some
procedures by using statements outside of function definitions. Here, these procedures are
named ‘global procedures’. The global procedures are executed even before the main
function starts execution.

Example:

Same as the example in section 5.1.1 above

5.1.3 Function Definition
<function_definition> ::= <type_specifier> <literal_name>

(<parameter_list>) <compound_statement>

A BDL function definition form is greatly simplified compared to that of C function
definition form. The main difference is that the function name directly follows the type
specifier since BDL does not support pointers and structures. The return value from the
function is either void, int or char. A BDL function serves as a unit of execution
procedure just like a C function does, but also it is a logical grouping of bitstream syntax
just like its use in ISO MPEG standard. When a BDL function executes, it parses a group
of bits and optionally returns an integer value.

Example:

int add2(int x, int y)
{

return x + y;
}

C still allows the old form, original K&R form, of function definition that does not have a
function parameter list in the parentheses. By contrast, BDL does not allow this. A
function must be declared in a new ANSI declaration form in which the parameter list
must be placed in the pair of parentheses following the function name. Each of the
parameter must be typed as well. There is no implicit ‘int’ assumption.

General Parser

10

5.1.4 Type Specifier
<type_specifier> ::= void | int | char | <enum_specifier>

Bitstream syntax is generally designed for target hardware device to parse the stream in
real time in actual application environment, in which floating-point operation is costly to
implement and almost prohibitive. Thus, we can safely assume that the values we deal
with do not include floating point numbers. The target hardware on which I am going to
implement the parser is a popular 386 and above x86 processor PC. Therefore, numbers
in BDL are limited to 32bit-integer type or 8bit-character type. BDL also supports
enumeration type, which is simply a synonym to integer however, it does provide
additional convenience in programming and a better interface when the parser presents
the parsed result by the names instead of cryptic numbers. The void type is for syntactical
restriction to detect coding errors. A compiler can make use of it to warn a programmer
about inconsistencies in a program that some expressions relying on a return value from a
void function.

Example:

int x;

enum {
ONE = 1,
TWO,
THREE

} count;

void useless(void) {}

5.1.5 Literal Name
<literal_name> ::= [A-Za-z_][0-9A-Za-z_]*

A literal name is the name for functions, variables and enumeration identifiers. It can be
any pattern that matches the above general expression except those reserved keywords.
The meaning of the above general expression is “a series of characters which starts from
an alphabet character or an underscore character, and followed by zero or more of
alphabet characters, decimal number characters or underscore characters.” Due to the
current simplification of the compiler implementation, the maximum length of the literal
name is limited to 1024 characters.

Following is a list of reserved keywords that can not be used as literal names.

void, int, char, enum, vlc, field, input, output, goto, for, while, do, if, else, switch,
case, default, continue, break, return

Example:

int this_is_a_variable_with_long_name_including_numbers_123;

General Parser

11

5.1.6 Parameter List
<parameter_list> ::= void | <parameter> { , <parameter> }

A parameter list of a function definition is either a single void or a list of parameters
separated by comma character.

Example:

int add3(int x, int y, int z)
{

return x + y + z;
}

5.1.7 Parameter
<parameter> ::= <type_specifier> <literal_name>

A parameter is a literal name following a type specifier. The name of the parameter is
bound to the name scope of the function definition. This is the same as C.

Example:

See section 5.1.6

5.1.8 Enumeration Specifier
<enum_specifier> ::=

enum ‘{‘ <enumerator_list> ‘}’ |
enum vlc ‘{‘ <vlc_list> ‘}’

The enumeration specifier has two kinds of forms. One form is a simple enumeration that
is similar to the C enumeration. The other one does not exist in C. It takes a post
positioned qualifier ‘vlc’ following the keyword ‘enum’. For the details of vlc, see the
section 5.1.12 below. Each has different kind of list in the curly brackets. Unlike C, both
forms do not support naming the enum type itself thus no type name is allowed between
the keyword ‘enum’ or ‘enum vlc’ and the following list. The enum specifier works as a
type so that you can declare variables based on this type. Unlike int type, enum can be
declared without taking variable names. The variableless enum serves as a list of named
constants. The enum declaration is bound to the inner most naming scope so is the C
enum declaration.

Example:

enum {
false,
true

};

General Parser

12

enum {
ten = 10,
one_hundred = 100,
one_hundred_one

} special_numbers0, special_numbers1;

enum vlc {
code0:”1”,
code1:”01”,
code2:”001”,
code3:”0001”

} simple_vlc;

5.1.9 Enumerator List
<enumerator_list> ::= <enumerator> { , <enumerator> }

An enumerator list is a list of enumerators, each one separated by a comma.

5.1.10 Enumerator
<enumerator> ::=

<literal_name> |
<literal_name> = <constant_expression> |
<literal_name> = <constant_expression> ‘..’ <constant_expression> |
<literal_name> = ‘..’ <constant_expression> |
<literal_name> = <constant_expression> ‘@’ <constant_expression> |
<literal_name> = <constant_expression> ‘..’ <constant_expression> ‘@’

<constant_expression> |
<literal_name> = ‘..’ <constant_expression> ‘@’ <constant_expression>

An enumerator is a literal name or a literal name followed by an optional equal symbol
and value specifier. It gives a name to a specific integer value. The default value of the
enumerator starts from zero and increases by one within the enumerator list. When a
constant expression is provided the enum value is the result value of the expression
evaluation. If no value is provided, an increment of the previous value is assigned. This is
the same as C enumerator definition. While the first two forms above are same as C
enumerators, the rest are BDL specific forms. Those special forms are only meaningful in
field declarations described in the section 5.1.18. The double dot symbol indicates a rage
of integer between two numbers and including them. The value on the left side of the dots
is the nominal value of the enumerator, meaning when the enumerator name is used in an
expression it is substituted by this value. However, any numbers fall in this range is
categorized as this enumerator. For example, the variable ‘x’ in a 4-bit field statement in
the following example will be reported as GROUP0 when the value parsed from the
bitstream is less than 8. Otherwise, it is reported as GROUP1. The values of GROUP0
and GROUP1, when they are used in an expression, are 0 and 8 respectively.

field enum { GROUP0 = 0..7, GROUP1 = ..15 } x:4;

The range can be specified in either ascending order or descending order and the nominal
value is always on the left side of the double dot symbol. If it takes an ascending form,

General Parser

13

the nominal value is the smallest integer in the range. In the descending order, the
nominal value is the largest integer within the range.

The form with ‘@’ symbol takes an optional masking value after the ‘@’ symbol. The
bits specified as 1 in the mask value are ignored in the comparison. For example the
following two declarations are equivalent.

field enum { GROUP0 = 0..7, GROUP1 = ..15 } x:4;
field enum { GROUP0 = 0 @ 7, GROUP1 = 8 @ 7 } x:4;

5.1.11 VLC List
<vlc_list> ::= <vlc> { , <vlc> }

A vlc list is a list of vlcs, each separated by a comma. It defines a set of vlc codes.

5.1.12 VLC
<vlc> ::= <literal_name> : “CODE_PATTERN” [= <constant_expression>]

The name vlc stands for variable length code. This form gives a name to a specific vlc
code pattern. The CODE_PATTERN is surrounded by a pair of double quotation marks.
It is a string consisting of either character 0 or character 1, which specifies a binary code
pattern. The value of vlc follows the rule of enumerator, which is assigned by the order in
the list, and is not the binary value of the CODE_PATERN.

Example:

enum vlc {
CODE_A : “1”,
CODE_B : “01”,
CODE_C : “001” = 3
CODE_D : “0001”

} code_table;

This defines a variable code_table that takes one of four values; CODE_A, CODE_B, CODE_C or
CODE_D. Their values are 0, 1, 3 and 4 respectively.

5.1.13 Statement
<statement> ::=

<compound_statement> |
<expression_statement> |
<selection_statement> |
<iteration_statement> |
<declaration_statement> |
<jump_statement> |
<label_statement>

A statement is one of the above listed statement groups.

General Parser

14

5.1.14 Compound Statement
<compound_statement> ::= ‘{‘ { <statement> } ‘}’

A compound statement consists of zero or more statements surrounded by a pair of curly
braces. A compound statement groups multiple statements and make them as if one
statement syntactically. A compound statement also creates a new name space thus the
local names can override the same names already defined outside of the compound
statement. This behavior is same as C.

5.1.15 Expression Statement
<expression_statement> ::= ; | <expression> ;

The expression statement consists of an expression followed by a semicolon or just a
semicolon.

5.1.16 Selection Statement
<selection_statement> ::=

if (<expression>) <statement> |
if (<expression>) <statement> else <statement> |
switch (<expression>) <statement>

The selection statement selects the flow of operation. Above three forms operates exactly
same as defined in C.

5.1.17 Iteration Statement
<iteration_statement> ::=

while (<expression>) <statement> |
do <statement> while (<expression>) |
for ([<expression>] ; [<expression>] ; [<expression>]) statement

The iteration statement provides looping operation. All three forms operates exactly same
as defined in C.

5.1.18 Declaration Statement
<declaration_statement> ::=

<type_specifier> { <declarator> } ; |
field [output] [“FORMAT”] <type_specifier>

<field_declarator> [: <constant_expression>] ; |
input <input_info> ; |
input ‘{‘ <input_info_list> ‘}’ |
output <variable_reference> : <constant_expression> ;

General Parser

15

There are five forms in declaration statement. The first form is the most typical one,
which consists of a type specifier followed by zero or more of declarators then terminated
with a semicolon. The second form takes a keyword ‘field’, an optional keyword ‘output’
and an optional FORMAT string in front of a field declarator, see 5.1.21 below. In
addition, the second form has an optional trailer consisting of colon and constant
expression before the terminating semicolon. The last three forms, starting with keyword
‘input’ or ‘output’, will be discussed at the end of this section.

BDL removes C’s restriction on where the declarations are allowed. C prohibits the
declarations anywhere but the beginning of a compound statement block or the beginning
of a function body block. BDL allows declaration to be placed at anywhere a statement is
allowed. In this aspect BDL resembles more like C++, however the following example,
which is OK in C++, is illegal in BDL since ‘for’ does not take statements in the
parentheses, see 5.1.17 above.

for(int i = 0; i < 10; i++) { ... } /* this generates syntax error */

The first one of the five declaration forms declares standard variables. The declarator,
described in a later section, maybe a scalar variable or an array variable with or without
initialization expression. If the type specifier is enum, the following declarator may be
omitted. In this case the enum identifiers serves as named constants within the name
space of this declaration. The following examples all belong to the first form.

int x, y, z;
char c = ‘a’, d, n = ‘\n’;
int array[10], matrix[3][4];
enum {

LOW, MID, HIGH
} level;
enum {

FALSE = 0,
TRUE = 1

};

While all the above declaration have the similar effect as the variable declaration in C,
the form with ‘field’ keyword is unique in BDL. The keyword ‘field’ means that the
declaring variable corresponds to a certain bit field of the input bitstream. It is a
combination of variable declaration and automatic initialization of the variable with the
value taken from the input bitstream. For int, char and enum types in the second form, the
trailing colon and constant expression are mandatory because the value of the constant
expression specifies the bit width of that field, which is necessary for bit extraction.
When a BDL program executes, whenever the parser encounters the field statement it
retrieves the number of specified bits from the bitstream and advance the current read
location in the stream by that amount. The retrieved value is stored in the declared
variable. If a negative bit width is specified, that field is considered as little endian field,
otherwise all regular fields are treated as big endian field. If the type is enum vlc the
colon and constant expression are prohibited because the width of the variable length
code is undetermined until the parser sees the actual bitstream. When parser executes the
enum vlc declaration, it tries to match one of the codes defined in that vlc declaration and
extracts the matched code from the bitstream. Note that the value stored in the declared

General Parser

16

variable is not the extracted vlc code itself but the enum value that is determined by the
order in the declaration, starting from 0 and incrementing by 1. This is because a scalar
vlc code value has no significance to identify itself, for example codes “001” and “0001”
are valid and different vlc codes, but both shares an identical code value 1. While parsing
vlc, if none of the code matches the bit pattern at the current location, the program
terminates with a vlc decode error. The FORMAT is a string surrounded by a pair of
double quotations. It specifies the presentation format of that field. If there is no
FORMAT specified the bitstream field is extracted and the variable is initialized with that
value but nothing is presented to the user. The definition of the format follows that of the
C standard library function ‘printf’. For example, if you wish to present an integer value
surrounded by a pair of parenthesis use a format string like “(%d)”. The available format
characters for each type are listed in the Table 3 Format Characters and their Order
below. You may specify as little as zero format-characters within the entire format string
but if you use them they must match the kind and the order listed in the table.

Table 3 Format Characters and their Order

Type Max
No. of
values

Format Characters (must follow a ‘%’
character to be effective) in the format string

Note

int 1 [d | c | x | X] an integer value

enum 2 [s [d | c | x | X]] first string is the enum entry identifier name,
optional second integer value is the enum value

enum
vlc

4 [s [d | c | x | X [d | c | x | X [d | c | x | X]]]] first string is the enum entry identifier name,
optional second integer is the enum value,
optional third integer value is the vlc code
value, optional fourth integer value is the code
bit width

Here is an example of some filed declaration.

field "%d" int horizontal_size_value:12;
field "<%s> (%d)" enum {
 aspect_ratio_forbidden,
 aspect_ratio_undefined,
 aspect_ratio_3x4,
 aspect_ratio_9x16,
 aspect_ratio_1x221
 } aspect_ratio_information:4;
field "%2d " int intra_quantiser_matrix[8][8]:8;

The following two examples compare big endian (normal) field and little endian field.

field int big:12;
first big:12 last

x x b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 x x

field int little:-12;
first little:-12 last

x x b7 b6 b5 b4 b3 b2 b1 b0 b11 b10 b9 b8 x x

General Parser

17

The form with ‘input’ keyword serves for interactive parameter passing. When the parser
encounters the input declaration it asks user to provide a value and the declared variable
is initialized with the user provided value. There are two forms for input declaration, one
with single input information and the other with multiple input information in a list.
Under GUI operation each input statement generates a single dialog interaction, thus
multiple input statements with a single input information for each, and a single input
statement with multiple input information as a list makes difference. The former presents
many dialog boxes, one for each input statement while the latter presents a single dialog
box that contains all input information in the list. Here is an example of input statements.
Each input information must provide a initialization value, which is provided as a default
value in the user interaction.

input “How many packets?” int number_of_packet = 0;
input {

“coordinate X:” x = 0;
“coordinate Y:” y = 0;

}

Unlike other declaration forms, the form with ‘output’ keyword does not really declare
variables. It is categorized as one of the declaration statement only from its syntactical
similarity point of view. What it actually does is send the content value of the variable to
the output stream, which goes into an inter-process communication pipeline. For this
purpose the colon proceeded constant expression must be provided in order to specify the
bit width of the output field. Obviously, the variable in output statement must be declared
before hand. Here is an example of output statements.

output x:8;
output matrix[8]:8;

5.1.19 Input Information
<input_info> ::= “PROMPT” <type_specifier> <init_declarator>

Input information consists of prompting string, type specifier and initialized declarator.
The PROMPT is a string presented to the user at the time of inquiry.

5.1.20 Input Information List
<input_info_list> ::=

<input_info> ; |
<input_info_list> <input_info> ;

Input information list is a one or more input information each terminated with a
semicolon.

5.1.21 Field Declarator
<field_declarator> ::=

<direct_declarator> |

General Parser

18

<direct_declarator> ‘[‘ <constant_expression> : <expression> ‘]’

A field declarator takes a form of direct declarator (see 5.1.24 below) or a direct
declarator followed by a special array dimension. It is a kind of direct declarator, which
can take an extra expression in the last element of the array size specifier. The role of the
constant expression is the same as regular dimension specification that defines the size of
the array. The expression following the colon character specifies how many elements of
the declared space in this dimension to be filled when the bits are extracted from the
bitstream. For example, the following field declaration reserves 3 by 5 character array
space then fills the 3 by 4 space with 12 of 8bit data extracted from the bitstream.
Unfilled space, array[n][4] in this case, are guaranteed to be cleared to zero.

Example:

field array[3][5:4]:8;

5.1.22 Declarator
<declarator> ::= <init_declarator> | <direct_declarator>

A declarator is either an initialized declarator or a direct declarator.

5.1.23 Initialized Declarator
<init_declarator> ::= <literal_name> = <assignment_expression>

An initialized declarator consists of a literal name followed by an equal sign and
assignment expression.

Example:

int a = 3;
int b = c + 4;

5.1.24 Direct Declarator
<direct_declarator> ::=

<literal_name> |
<direct_declarator> ‘[‘ <constant_expression> ‘]’

A direct declarator consists of simply a literal name or a literal name followed by any
number of array dimension specifications. Since array form is not in the initialized
declarator, BDL does not provide array initialization.

Example:

int a;
int array[3][4][5];

General Parser

19

5.1.25 Jump Statement
<jump_statement> ::=

continue ; |
break ; |
return [<expression>] ; |
goto <literal_name> ;

The jump statement is one of the four forms listed above. They all follow the same rule
and behave the same as C counterparts.

5.1.26 Label Statement
<label_statement> ::=

case <constant_expression> : <statement> |
default : <statement> |
<literal_name> : <statement>

The label statement is one of the above three forms. They are compatible with C
counterparts.

5.1.27 Expression
<expression> ::= <assignment_expression> | <expression> , <assignment_expression>

An expression is either a single assignment expression or multiple assignment
expressions concatenated with a comma between them. This definition of expression is
identical with that of C. The comma works as a comma operator.

5.1.28 Assignment Expression
<assignment_expression> ::=

<conditional_expression> |
<variable_reference> <assignment_operator> <assignment_expression>

An assignment expression is either a conditional expression or an assignment, which
right hand value is also an assignment expression. This definition is identical with the
assignment expression definition in C.

5.1.29 Conditional Expression
<conditional_expression> ::=

<binary_expression> |
<binary_expression> ? <expression> : <conditional_expression>

A conditional expression can be a binary expression or a combination of binary
expression, expression and conditional expression concatenated with ‘?:’ ternary
operator. This definition is same as C.

General Parser

20

5.1.30 Variable Reference
<variable_reference> ::=

<literal_name> |
<variable_reference> ‘[‘ <expression> ‘]’

A variable reference can take two forms. One form is a simple literal name. This is to
refer to a simple variable. The other is an indexed array element form, which provides a
reference to an array element. The level of indirection must match the declared one. This
is different from C. Since BDL does not support pointer types, unmatched level of
indirection introduces an unknown type.

Example:
int a = 1;
int b[3][4];
int c = b[a][a + 1];
a = b[0];

The last line is an error because the level of indirection of b[0] does not match the
declared one.

5.1.31 Assignment Operator
<assignment_operator> ::=

= | += | -= | *= | /= | %= | |= | ^= | &= | <<= | >>=

Their definitions are identical to the C counterparts. The precedence of the operators
including assignment operators are defined the same as C.

5.1.32 Binary Expression
<binary_expression> ::=

<unary_expression> |
<binary_expression> <binary_operator> <binary_expression>

A binary expression is either a unary expression or two binary expressions concatenated
with a binary operator.

5.1.33 Binary Operator
<binary_operator> ::= * | / | % | + | - | << | >> | < | <= | > | >= | == | != | & | ^ | ‘|’ | && | ‘||’

The definition of binary operators including their precedence is the same as C.

5.1.34 Unary Expression
<unary_expression> ::=

<postfix_expression> |
++ <variable_reference> |
-- <variable_reference> |
+ <unary_expression> |

General Parser

21

- <unary_expression> |
~ <unary_expression> |
! <unary_expression>

An unary expression is either a postfix expression, a pre-increment/pre-decrement
operator followed by a variable reference or a unary operator followed by a unary
expression. This is the same as C except sizeof operation and address operations ‘&’ and
‘*’.

5.1.35 Postfix Expression
<postfix_expression> ::=

<primary_expression> |
<function_call> |
<variable_reference> |
<variable_reference> ++ |
<variable_reference> --

A postfix expression is a primary expression, a function call, a variable reference or a
variable reference followed by a post-increment/post-decrement operator. This definition
is the same as C except BDL does not have pointer postfix operators ‘.’ and ‘->’.

5.1.36 Primary Expression
<primary_expression> ::=

<constant> |
<string_constant> |
(<expression>)

A primary expression is a constant, string or an expression surrounded by a pair of
parentheses, same as C.

5.1.37 Constant
<constant> ::=

0b[01][01]* |
0o[0-7][0-7]* |
0[0-7][0-7]* |
0x[0-9A-Fa-f][0-9A-Fa-f]* |
[0-9][0-9]* |
\'(\\.|[^\’])*\'

The constant is an integer value expressed in the above general expression forms. The
first one is a binary constant. The second and the third one are octal constants. The fourth
one is a hexadecimal constant. The fifth one is a decimal constant. The last form is a
character constant. A character string surrounded by a pair of single quote characters is
treated as a character constant, which value is the ASCII code of the first character. All
standard character escape sequences defined in C, \n, \t, \v, \b, \r, \f, \a, \\, \?, \’, \”, \ooo
and \xhh are available.

General Parser

22

5.1.38 String Constant
<string_constant> ::= \"(\\.|[^\\\"])*\"

A string constant is a string of characters surrounded by a pair of double quote characters.
Its value is the memory address where the first character is stored. Since BDL does not
have a pointer type, the value is treated as an integer. All standard character escape
sequences defined in C, \n, \t, \v, \b, \r, \f, \a, \\, \?, \’, \”, \ooo and \xhh are available. A
string can contain negligible new lines by placing ‘\’ character at the end of line. The new
line followed by the ‘\’ is ignored. In addition, multiple string constants separated by
white spaces are concatenated as a single string constant, as is same in C.

5.1.39 Control Line
#include “FILE_NAME” |
#include <FILE_NAME>

There is only one kind of control line in BDL. The “#include” inserts the contents of the
specified file into this location. It works exactly same as C pre-processor’s “#include”.
There is no distinction between two forms. In both cases, the include-file is expected to
be in the current directory of the parser.

General Parser

23

6 Virtual Machine (VM)

The virtual machine (VM) is the engine that parses the bitstream according to the given
syntax rule, however the syntax rule VM sees is no more in BDL form. The original BDL
program is now compiled into a set of primitive instructions. Execution of the primitive
instructions provides the VM a great runtime performance compared to interpreting BDL.

6.1 VM Architecture

The VM design is based on two major considerations. One, it must be fast in execution.
Two, it must be designed to help simplifying both engine itself and the compiler
implementation. For the fast execution it has small number of instructions and has only a
few addressing modes. To help simplify the compiler design the engine is based on a
register-less stack machine. It has no general-purpose register file at all. It has only three
special purpose pointers, an instruction pointer (IP), a stack pointer (SP) and a stack
frame pointer (FP). All the temporary values in computation are kept in the stack storage
space.

There is no intention of building this VM in hardware so there are a few decisions made
that may not be suitable for hardware implementation. For example, the compiled
instructions are not laid out in a linear memory space as all the real processors do. They
are rather scattered around in memory but as a whole, they form a single linked list. This
eliminates the need for compiler to keep many temporary data before generating the final
codes and removes the cumbersome address resolving computation.

A few limited operations that require the fastest performance are implemented as a set of
native functions. These operations include bit pattern search and bit retrieval services. A
BDL program can call these functions just as if other functions defined in the BDL
program. For this purpose, the VM provides a thunking mechanism between BDL
function call and native function call.

General Parser

24

The following diagram shows the VM internals.

VM keeps all data in stack storage. There is no heap thus even global variables are
allocated in the stack space. VM keeps track of stack usage with two pointers, stack
pointer (SP) and stack frame pointer (FP). The left most picture in the next diagram
illustrates the stack usage right after it enters a function. All the global variables are
allocated at the bottom of the stack. The beginning of the stack frame is pointed by FP
and the function arguments are allocated at the bottom of the stack frame. The local
variables are allocated after the function arguments. Finally, the SP points at the
beginning of the free stack space after the local variables. As the function executes the
stack space is occupied and released dynamically. The diagram shows how an expression
“2+3” evaluates on the stack. When function call nests, a new stack frame is created from
the current SP location as new stack frame sits on top of the previous one.

Virtual Machine

Instruction
Pointer

(IP)

Stack
Pointer

(SP)

Stack Frame
Pointer

(FP)

Stack

Instruction

Opcode

Operand

next

Instruction

Opcode

Operand

next

Instruction

Opcode

Operand

next

NULL

Global
Variables

Stack Base

Function
Arguments

Local
Variables

Free Space

FP

SP

Global
Variables

Stack Base

Function
Arguments

Local
Variables

Free Space

FP

SP

Global
Variables

Stack Base

Function
Arguments

Local
Variables

Free Space

FP

SP

Global
Variables

Stack Base

Function
Arguments

Local
Variables

Free Space

FP

SP

PUSH 2 PUSH 3 +

2

3

52

Execution
Stack Usage

Stack
Frame

General Parser

25

6.2 Virtual Machine Instruction Set (Opcode)
Each instruction handler is implemented as a small C function. An 8-bit opcode is
assigned to each instruction. For the fastest execution, VM uses table-lookup to map an
opcode to a handler function. It has two groups of table for this purpose. Here is how a
single execution cycle is performed. 1) Get the opcode from the instruction that is pointed
by the IP. 2) Select a table for that opcode. 3) Look up the function from the table with
the opcode as an index to the table. 4) Execute that function.

Opcode is grouped into two groups, non-load/store group and load/store group. The next
table shows the bit allocation for each group of opcode.

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
non-

load/store
group

0 0:Relative
1:Absolute

Identifier

load-store
group

1 0:Relative
1:Absolute

0:Direct
1:Indirect

0:Int
1:Char

Identifier

The following table shows the currently implemented VM instruction set.

opcode mnemonic operation
0x00 HALT halts VM execution

0x01 NOP no operation

0x02 PUSH *stack_ptr++ = operand;

0x03 POP stack_ptr--;

0x04 DUP *stack_ptr = *(stack_ptr – 1); stack_ptr++;

0x05 RESERVE stack_ptr += operand

0x06 PUSHFRM creates new stack frame

0x07 POPFRM restore previous stack frame

0x08 PUSHSCP reserved

0x09 POPSCP reserved

0x0a LOGICAL_OR --stack_ptr; *(stack_ptr - 1) = *(stack_ptr - 1) || *stack_ptr;

0x0b LOGICAL_AND --stack_ptr; *(stack_ptr - 1) = *(stack_ptr - 1) && *stack_ptr;

0x0c OR --stack_ptr; *(stack_ptr - 1) |= *stack_ptr;

0x0d XOR --stack_ptr; *(stack_ptr - 1) ^= *stack_ptr;

0x0e AND --stack_ptr; *(stack_ptr - 1) &= *stack_ptr;

0x0f EQUAL --stack_ptr; *(stack_ptr - 1) = *(stack_ptr - 1) == *stack_ptr;

0x10 NOT_EQUAL --stack_ptr; *(stack_ptr - 1) = *(stack_ptr - 1) != *stack_ptr;

0x11 LT --stack_ptr; *(stack_ptr - 1) = *(stack_ptr - 1) < *stack_ptr;

0x12 LE --stack_ptr; *(stack_ptr - 1) = *(stack_ptr - 1) <= *stack_ptr;

0x13 GT --stack_ptr; *(stack_ptr - 1) = *(stack_ptr - 1) > *stack_ptr;

0x14 GE --stack_ptr; *(stack_ptr - 1) = *(stack_ptr - 1) >= *stack_ptr;

0x15 SL --stack_ptr; *(stack_ptr - 1) <<= *stack_ptr;

0x16 SR --stack_ptr; *(stack_ptr - 1) >>= *stack_ptr;

0x17 ADD --stack_ptr; *(stack_ptr - 1) += *stack_ptr;

0x18 SUB --stack_ptr; *(stack_ptr - 1) -= *stack_ptr;

0x19 MUL --stack_ptr; *(stack_ptr - 1) *= *stack_ptr;

0x1a DIV --stack_ptr; *(stack_ptr - 1) /= *stack_ptr;

0x1b MOD --stack_ptr; *(stack_ptr - 1) %= *stack_ptr;

0x1c 2COMP *(stack_ptr - 1) = -*(stack_ptr - 1);

0x1d 1COMP *(stack_ptr - 1) = ~*(stack_ptr - 1);

0x1e NOT *(stack_ptr - 1) = !*(stack_ptr - 1);

General Parser

26

0x1f JMP instruction_ptr = operand;

0x20 JZ if(*--stack_ptr == 0) instruction_ptr = operand;

0x21 JNZ if(*--stack_ptr != 0) instruction_ptr = operand;

0x22 JSR call subroutine

0x23 RET return subroutine

0x24 SUBR call native function

0x25 FIELD read bit field

0x26 INPUT read input

0x27 OUTPUT write output

0x28 VM2NATV convert VM address to native

0x80 LD *stack_ptr++ = stack[operand];

0x81 ST stack[operand] = *(stack_ptr - 1);

0x82 ADD_ST *(stack_ptr – 1) = stack[operand] += *(stack_ptr – 1);

0x83 SUB_ST *(stack_ptr – 1) = stack[operand] -= *(stack_ptr – 1);

0x84 MUL_ST *(stack_ptr – 1) = stack[operand] *= *(stack_ptr – 1);

0x85 DIV_ST *(stack_ptr – 1) = stack[operand] /= *(stack_ptr – 1);

0x86 MOD_ST *(stack_ptr – 1) = stack[operand] %= *(stack_ptr – 1);

0x87 OR_ST *(stack_ptr – 1) = stack[operand] |= *(stack_ptr – 1);

0x88 XOR_ST *(stack_ptr – 1) = stack[operand] ^= *(stack_ptr – 1);

0x89 AND_ST *(stack_ptr – 1) = stack[operand] &= *(stack_ptr – 1);

0x8a SL_ST *(stack_ptr – 1) = stack[operand] <<= *(stack_ptr – 1);

0x8b SR_ST *(stack_ptr – 1) = stack[operand] >>= *(stack_ptr – 1);

0x8c PRE_INC *stack_ptr++ = ++stack[operand];

0x8d PRE_DEC *stack_ptr++ = --stack[operand];

0x8e POST_INC *stack_ptr++ = stack[operand]++;

0x8f POST_DEC *stack_ptr++ = stack[operand]--;

General Parser

27

7 Built-in Functions

There are some operations that:
(1) execute at extreme frequency in the course of regular parsing process and are

computationally expensive to perform in BDL.
(2) involves low-level system interaction.
(3) map directly to native library functions that are not trivial to implement.

These operations are provided in the form of built-in functions, which are compiled in
native instruction set. By doing so, the type (1) operation gain a great runtime
performance. There is simply no way to write type (2) functions in BDL alone. Type (3)
functions are too complicated to ask users to implement. The built-in functions can be
regarded as pre-defined library functions. That means BDL programs can freely make
calls to built-in functions in the same way they call BDL functions, without a need of
declaring anything for built-in functions. Following is a table of built-in functions.

function name type description
search_word (1) Advances the input stream read pointer until it encounters a

specified word pattern
look_at_bits (1) Peek at a specified series of bits at a specified location

looking_at_bits (1) Test if a specified pattern of bits exists at a specified location
tell_bytes (1),(2) Get the current byte location within the input stream
tell_bits (1),(2) Get the current bit location within the input stream

exit (2) Finish the program execution
printf (2),(3) Send a formatted character string to the console
sprintf (2),(3) Store a formatted character string into a specified memory location

The rest of the subsections in this section describe each of the built-in functions in depth.

7.1 search_word

DEFINITION
int search_word(int word_pattern,

int word_mask = 0);

DESCRIPTION
Search for word_pattern from the current bit location in the input stream
toward the end of the stream. Word_pattern is a 32bit value. First it
discards the unaligned bits then the search operation starts from the
nearest byte aligned location in byte by byte manner. When it finishes the
search the current bit location is set to the beginning of the matched
pattern which is always byte aligned.

ARGUMENTS
int word_pattern A 32bit pattern to look for

General Parser

28

int word_mask = 0 An optional mask bits. The bits set to one in this
mask do not contribute to the matching criterion.

RETURN VALUE
The matched word. It may not necessarily be same as the word_pattern
value depending on the word_mask. Weh word_mask is 0 the return value
is identical to the word_pattern.

NOTE
When it reaches the end of the input stream before finding the specified
pattern, the program will exit with a bitstream-exhausted exception.

7.2 look_at_bits

DEFINITION
int look_at_bits(int bit_length,

int bit_offset = 0);

DESCRIPTION
Retrieves specified number of bits from the specified location. It does not
affect the current bit location in the stream.

ARGUMENTS
int bit_length The number of bits to retrieve. Must be 32 or less.
int bit_offset = 0 An optional bit location offset specifying at where

the retrieval should take place. This is a relative
offset from the current location thus 0 means the
bit retrieval is performed from the current location.
Positive number specifies bit offset toward the end
of the stream. Negative number specifies bit offset
toward the beginning of the stream.

RETURN VALUE
Retrieved value

NOTE
When it reaches the end of stream before acquiring the specified bits the
program will exit with a bitstream-exhausted exception.

7.3 looking_at_bits

DEFINITION
int looking_at_bits(int bit_pattern,

int bit_length,
int bit_mask = 0,
int bit_offset = 0);

General Parser

29

DESCRIPTION
Test if a pattern of bits are seen at the specified bit location. It does not
affect the current bit location in the stream.

ARGUMENTS
int bit_pattern A maximum 32bit long bit pattern to test against

the stream.
int bit_length The length of bit_pattern. Must be 32 or less. If the

length is less than 32, both bit_pattern and
bit_mask are treated as LSB justified.

int bit_mask = 0 An optional mask bits. The bits set to one in this
mask do not contribute to the maching criterion.

int bit_offset = 0 An optional bit location offset specifying at where
the matching operation should take place. This is a
relative offset from the current location thus 0
means the matching operation is performed from
the current location. Positive number specifies bit
offset toward the end of the stream. Negative
number specifies bit offset toward the beginning of
the stream.

RETURN VALUE
1 if the pattern matches. Otherwise 0.

NOTE
When it reaches the end of stream before finding the specified pattern the
program will exit with a bitstream-exhausted exception.

7.4 tell_bytes

DEFINITION
int tell_bytes(void);

DESCRIPTION
Gets the current read position within the input stream.

ARGUMENTS
none

RETURN VALUE
The number of bytes at the current stream read position. The very first
byte in the stream is counted as zero. The definition of the current position
is the byte location, which is not yet read but to be read at the next read.

NOTE

General Parser

30

Since the return value is a 32bit signed integer, the return value is not
correct if the position exceeds 2.15G byte location.

7.5 tell_bits

DEFINITION
int tell_bits(void);

DESCRIPTION
Gets the current read position within the input stream.

ARGUMENTS
none

RETURN VALUE
The number of bits at the current stream read position. The very first bit
int the stream is counted as zero. The definition of the current position is
the bit location, which is not yeat read but to be read at the next read.

NOTE
Since the return value is a 32bit signed integer, the rerun value is not
correct if the position exceeds 2.15G bit (268M byte) location.

7.6 exit

DEFINITION
void exit(int status = 0);

DESCRIPTION
Terminates the program execution and starts clean-up procedure.

ARGUMENTS
int status = 0 An optional return status.

RETURN VALUE
none

NOTE
This function will not return to the caller.

7.7 printf

General Parser

31

DEFINITION
int printf(const char *format, ...);

DESCRIPTION
Performs exactly same as 'printf' function in a C standard library. The
output is displayed in the console are.

ARGUMENTS
const char *format A constant string that specifies the printing

format.
Any number of optional arguments can follow. It is the programmer's
responsibility to match the arguments with the format specification.

RETURN VALUE
The number of format units.

NOTE
Format specifiers other than integer, character and string are meaningless
since the system does not support floating point numbers.

7.8 sprintf

DEFINITION
int sprintf(char *str, const char *format, ...);

DESCRIPTION
Performs exactly same as 'sprintf' function in a C standard library.

ARGUMENTS
char *str An address from where the formatted string will

be stored.
const char *format A constant string that specifies the printing

format.
Any number of optional arguments can follow. It is the programmer's
responsibility to match the arguments with the format specification.

RETURN VALUE
The number of format units.

NOTE
Format specifiers other than integer, character and string are meaningless
since the system does not support floating point numbers.

General Parser

32

8 Prototype General Parser

A prototype General Parser has been built based on the design described in this paper.
This prototype fully implements all the specifications we have discussed here. However,
the purpose of building this prototype was a proof of concept; to see if it really works as
designed on the paper. Therefor it is not the best implementation as a final product.
Although currently there is no GUI interface, the code is well structured in a modular
fashion so that it is prepared to be placed in a different interface environment.

The prototype General Parser, gp.exe, is built as a Win32 command line application. It
takes BDL file names and input bitstream file name as command line arguments and
produces the parsed result out to the standard output. Here is the available command
switches and command line syntax.

Usage: gp [-c] [-d] [-v] [<bdl_source_file>...] [-b <bitstream_file>]

 -c code generation only and no execution
 -d output debug information
 -v get version information
 -b specifies the bitstream file

9 Sample Code and Execution Output

9.1 Sample 1

The next example program does not perform any parsing activity. It is just small enough
to provide easy comparison between BDL source program and the compiled instructions.

/* sample program – t.c - */

int fact(int n)
{
 if(n > 0)
 return n * fact(n - 1);
 return 1;
}

void main(void)
{
 int i;
 for(i = 0; i < 10; i++) {
 printf("fact(%d) = %d\n", i, fact(i));
 }
}

General Parser

33

D:\ota\project\bison\gp>gp -c -d t.c
compiling [t.c]...
pass1 ...
pass2 ...
linking ...
t.c:1: 00000000 RESERVE 0

00000001 PUSHFRM
00000002 RESERVE 4
00000003 JSR 00000016 ; t.c:13: ; main()
00000004 POPFRM
00000005 POP
00000006 HALT

t.c:5: 00000007 LD (+0) ; ===== fact() =====
00000008 PUSH 0 ; CONSTANT
00000009 >
0000000a JZ 00000014 ; t.c:7:

t.c:6: 0000000b LD (+0) ; var 'n'
0000000c PUSHFRM
0000000d LD (+0) ; var 'n'
0000000e PUSH 1 ; CONSTANT
0000000f -
00000010 JSR 00000007 ; t.c:5: ; fact()
00000011 POPFRM
00000012 *
00000013 RET

t.c:7: 00000014 PUSH 1 ; CONSTANT
00000015 RET

t.c:13: 00000016 PUSH 0 ; ===== main() =====
00000017 ST (+0) ; var 'i'
00000018 POP
00000019 LD (+0) ; var 'i'
0000001a PUSH 10 ; CONSTANT
0000001b <
0000001c JZ 0000002a ; t.c:16:

t.c:14: 0000001d PUSHFRM
0000001e PUSH 7941312 ; "fact(%d) = %d

"
0000001f LD (+0) ; var 'i'
00000020 PUSHFRM
00000021 LD (+0) ; var 'i'
00000022 JSR 00000007 ; t.c:5: ; fact()
00000023 POPFRM
00000024 SUBR 040c920 ; native function printf()
00000025 POPFRM
00000026 POP

t.c:13: 00000027 ()++ (+0) ; var 'i'
00000028 POP
00000029 JMP 00000019 ; t.c:13:

t.c:16: 0000002a RET
code generated successfully

General Parser

34

9.2 Sample 2
This example is really too long to show all. Things after the sequence_header function
are omitted. It parses MPEG2 video elementary stream. After this list is the example
parsed result.

enum {
 FALSE,
 TRUE
};

enum {
 START_CODE = 0x00000100,
 PICTURE_START_CODE = 0x00000100,
 USER_DATA_START_CODE = 0x000001b2,
 SEQUENCE_START_CODE = 0x000001b3,
 SEQUENCE_ERROR_START_CODE = 0x000001b4,
 EXTENSION_START_CODE = 0x000001b5,
 SEQUENCE_END_CODE = 0x000001b7,
 GROUP_START_CODE = 0x000001b8
};

int number_of_frame_center_offsets = 0;

void main(void)
{
 while(1)
 video_sequence();
}

void video_sequence(void)
{
 search_word(SEQUENCE_START_CODE);
 sequence_header();
 if(search_word(START_CODE, 0xff) == EXTENSION_START_CODE) {
 sequence_extension();
 do {
 extension_and_user_data(0);
 do {
 if(search_word(START_CODE, 0xff), looking_at_bits(GROUP_START_CODE, 32)) {
 group_of_pictures_header();
 extension_and_user_data(1);
 }
 picture_header();
 picture_coding_extension();
 extension_and_user_data(2);
 picture_data();
 } while(search_word(START_CODE, 0xff),
 looking_at_bits(PICTURE_START_CODE, 32) ||
 looking_at_bits(GROUP_START_CODE, 32));
 if(search_word(START_CODE, 0xff), !looking_at_bits(SEQUENCE_END_CODE, 32)) {
 sequence_header();
 sequence_extension();
 }
 } while(search_word(START_CODE, 0xff),
 !looking_at_bits(SEQUENCE_END_CODE, 32));
 } else {
 /* ISO/IEC 11172-2 */
 }
}

void sequence_header(void)
{
 field "0x%08x" int sequence_header_code:32;
 field "%d" int horizontal_size_value:12;
 field "%d" int vertical_size_value:12;
 field "<%s> (%d)" enum {
 aspect_ratio_forbidden,

General Parser

35

 aspect_ratio_undefined,
 aspect_ratio_3x4,
 aspect_ratio_9x16,
 aspect_ratio_1x221
 } aspect_ratio_information:4;
 field "<%s> (%d)" enum {
 frame_rate_forbidden,
 frame_rate_23_976,
 frame_rate_24_000,
 frame_rate_25_000,
 frame_rate_29_970,
 frame_rate_30_000,
 frame_rate_50_000,
 frame_rate_59_940,
 frame_rate_60_000
 } frame_rate_code:4;
 field "%d" int bit_rate_value:18;
 field "%d" int marker_bit:1;
 field "%d" int vbv_buffer_size_value:10;
 field "%d" int constrained_parameters_flag:1;
 field "%d" int load_intra_quantiser_matrix:1;
 if(load_intra_quantiser_matrix)
 field "%2d " int intra_quantiser_matrix[8][8]:8;
 field "%d" int load_non_intra_quantiser_matrix:1;
 if(load_non_intra_quantiser_matrix)
 field "%2d " int non_intra_quantiser_matrix[8][8]:8;
}

Here is the beginning part of the execution result.

D:\ota\project\bison\gp>gp test.bdl -b sony2.mpg
compiling [test.bdl]...
pass1 ...
pass2 ...
linking ...
code generated successfully
execution starts at ... Fri Aug 20 14:17:43 1999
[main]
 [video_sequence]
 [sequence_header]
 sequence_header_code:32 : 0x000001b3
 horizontal_size_value:12 : 704
 vertical_size_value:12 : 480
 aspect_ratio_information:4 : <aspect_ratio_3x4> (2)
 frame_rate_code:4 : <frame_rate_30_000> (5)
 bit_rate_value:18 : 37500
 marker_bit:1 : 1
 vbv_buffer_size_value:10 : 112
 constrained_parameters_flag:1 : 0
 load_intra_quantiser_matrix:1 : 0
 load_non_intra_quantiser_matrix:1 : 0
 [sequence_extension]
 extension_start_code:32 : 0x000001b5
 extension_start_code_identifier:4 : 1
 profile_and_level_escape:1 : 0
 profile_identification:3 : <Main_Profile> (4)
 level_identification:4 : <Main_Level> (8)
 progressive_sequence:1 : 0
 chroma_format:2 : <_4_2_0> (1)
 horizontal_size_extension:2 : 0
 vertical_size_extension:2 : 0
 bit_rate_extension:12 : 0
 marker_bit:1 : 1
 vbv_buffer_size_extension:8 : 0
 low_delay:1 : 0
 frame_rate_extension_n:2 : 0
 frame_rate_extension_d:5 : 0
 [extension_and_user_data]

General Parser

36

 [extension_data]
 extension_start_code:32 : 0x000001b5
 [sequence_display_extension]
 extension_start_code_identifier:4 : 2
 video_format:3 : 0
 colour_description:1 : 0
 display_horizontal_size:14 : 120
 marker_bit:1 : 1
 display_vertical_size:14 : 120
 [user_data]
 user_data_start_code:32 : 0x000001b2
 user_data:8 : 0x01
 user_data:8 : 0x02
 user_data:8 : 0x03
 user_data:8 : 0x04
 user_data:8 : 0x05
 user_data:8 : 0x06
 user_data:8 : 0x07
 user_data:8 : 0x08
 user_data:8 : 0x09
 user_data:8 : 0x0a
 [group_of_pictures_header]
 group_start_code:32 : 0x000001b8
 time_code:25 : 0x00001000
 closed_gop:1 : 1
 broken_link:1 : 0
 [extension_and_user_data]
 [user_data]
 user_data_start_code:32 : 0x000001b2
 user_data:8 : 0x0b
 user_data:8 : 0x0c
 user_data:8 : 0x0d
 user_data:8 : 0x0e
 user_data:8 : 0x0f
 user_data:8 : 0x10
 user_data:8 : 0x11
 user_data:8 : 0x12
 user_data:8 : 0x13
 user_data:8 : 0x14
 [picture_header]
 picture_start_code:32 : 0x00000100
 temporal_reference:10 : 2
 picture_coding_type:3 : <I> (1)
 vbv_delay:16 : 0x1c3c
 extra_bit_picture:1 : 0
 [picture_coding_extension]
 extension_start_code:32 : 0x000001b5
 extension_start_code_identifier:4 : 8
 f_code[2][2]:4 : 4 4
 : 15 15
 :
 intra_dc_precision:2 : 0
 picture_structure:2 : <Bottom_Field> (2)
 top_field_first:1 : 0
 frame_pred_frame_dct:1 : 0
 concealment_motion_vectors:1 : 1
 q_scale_type:1 : 1
 intra_vlc_format:1 : 0
 alternate_scan:1 : 1
 repeat_first_field:1 : 0
 chroma_420_type:1 : 0
 progressive_frame:1 : 0
 composite_display_flag:1 : 0
 [extension_and_user_data]
 [extension_data]
 extension_start_code:32 : 0x000001b5
 [picture_display_extension]
 extension_start_code_identifier:4 : 7
 [user_data]
 user_data_start_code:32 : 0x000001b2
 user_data:8 : 0x15

General Parser

37

 user_data:8 : 0x16
 user_data:8 : 0x17
 user_data:8 : 0x18
 user_data:8 : 0x19
 user_data:8 : 0x1a
 user_data:8 : 0x1b
 user_data:8 : 0x1c
 user_data:8 : 0x1d
 user_data:8 : 0x1e
 [picture_data]
 [picture_header]
 picture_start_code:32 : 0x00000100
 temporal_reference:10 : 2
 picture_coding_type:3 : <P> (2)
 vbv_delay:16 : 0x1dac
 full_pel_forward_vector:1 : 0
 forward_f_code:3 : 7
 extra_bit_picture:1 : 0
 [picture_coding_extension]
 extension_start_code:32 : 0x000001b5
 extension_start_code_identifier:4 : 8
 f_code[2][2]:4 : 2 2
 : 15 15
 :
 intra_dc_precision:2 : 1
 picture_structure:2 : <Top_Field> (1)
 top_field_first:1 : 0
 frame_pred_frame_dct:1 : 0
 concealment_motion_vectors:1 : 0
 q_scale_type:1 : 1
 intra_vlc_format:1 : 1
 alternate_scan:1 : 1
 repeat_first_field:1 : 0
 chroma_420_type:1 : 0
 progressive_frame:1 : 0
 composite_display_flag:1 : 0
 [extension_and_user_data]
 [extension_data]
 extension_start_code:32 : 0x000001b5
 [quant_matrix_extension]
 extension_start_code_identifier:4 : 3
 load_intra_quantiser_matrix:1 : 1
 intra_quantiser_matrix[8][8]:8 : 8 17 17 18 18 18 19 19
 : 19 19 20 20 20 20 20 21
 : 21 21 21 21 21 22 22 22
 : 22 22 22 22 23 23 23 23
 : 23 23 23 23 24 24 24 25
 : 24 24 24 25 26 26 26 26
 : 25 27 27 27 27 27 28 28
 : 28 28 30 30 30 31 31 33
 :
 load_non_intra_quantiser_matrix:1 : 1
 non_intra_quantiser_matrix[8][8]:8 : 16 17 17 18 18 18 19 19
 : 19 19 20 20 20 20 20 21
 : 21 21 21 21 21 22 22 22
 : 22 22 22 22 23 23 23 23
 : 23 23 23 23 24 24 24 25
 : 24 24 24 25 26 26 26 26
 : 25 27 27 27 27 27 28 28
 : 28 28 30 30 30 31 31 33
 :
 load_chroma_intra_quantiser_matrix:1 : 0
 load_chroma_non_intra_quantiser_matrix:1 : 0
 extension_start_code:32 : 0x000001b5
 [picture_display_extension]
 extension_start_code_identifier:4 : 7
 [user_data]
 user_data_start_code:32 : 0x000001b2
 user_data:8 : 0x15
 user_data:8 : 0x16
 user_data:8 : 0x17

General Parser

38

 user_data:8 : 0x18
 user_data:8 : 0x19
 user_data:8 : 0x1a
 user_data:8 : 0x1b
 user_data:8 : 0x1c
 user_data:8 : 0x1d
 user_data:8 : 0x1e
 [picture_data]
 [picture_header]
 picture_start_code:32 : 0x00000100
 temporal_reference:10 : 0
 picture_coding_type:3 : (3)
 vbv_delay:16 : 0x1858
 full_pel_forward_vector:1 : 0
 forward_f_code:3 : 7
 full_pel_backward_vector:1 : 0
 backward_f_code:3 : 7
 extra_bit_picture:1 : 0
 [picture_coding_extension]
 extension_start_code:32 : 0x000001b5
 extension_start_code_identifier:4 : 8
 f_code[2][2]:4 : 2 2
 : 3 3
 :
 intra_dc_precision:2 : 0
 picture_structure:2 : <Top_Field> (1)
 top_field_first:1 : 0
 frame_pred_frame_dct:1 : 0
 concealment_motion_vectors:1 : 1
 q_scale_type:1 : 0
 intra_vlc_format:1 : 0
 alternate_scan:1 : 1
 repeat_first_field:1 : 0
 chroma_420_type:1 : 0
 progressive_frame:1 : 0
 composite_display_flag:1 : 0
 [extension_and_user_data]
 [extension_data]
 extension_start_code:32 : 0x000001b5
 [picture_display_extension]
 extension_start_code_identifier:4 : 7
 [user_data]
 user_data_start_code:32 : 0x000001b2
 user_data:8 : 0x15
 user_data:8 : 0x16
 user_data:8 : 0x17
 user_data:8 : 0x18
 user_data:8 : 0x19
 user_data:8 : 0x1a
 user_data:8 : 0x1b
 user_data:8 : 0x1c
 user_data:8 : 0x1d
 user_data:8 : 0x1e
 [picture_data]

10 Conclusion

The General Parser - a programmable bitstream parser - concept has been thoroughly
studied. The detail specifications are examined and defined. A prototype system has been
put together and the concept is now proven to be a realistic solution.

General Parser

39

11 Acknowledgement

The work environment I am in has free atmosphere that allows individual to pursue one’s
own technical interest, which somehow relates to day to day work but may not
necessarily be tied to it directly. This kind of free atmosphere is important to foster
creativity, which is an essential element to the R&D activity. I find the management I
work for does understand this and I do appreciate that. I also want to express gratitude to
some of my colleagues. Those who showed technical interest in this work became beta
testers of the prototype system and provided many constructive comments; without them,
the system would not be as rich as it is defined today.

